50 research outputs found

    How the brain represents the reward value of fat in the mouth.

    Get PDF
    The palatability and pleasantness of the sensory properties of foods drive food selection and intake and may contribute to overeating and obesity. Oral fat texture can make food palatable and pleasant. To analyze its neural basis, we correlated humans’ subjective reports of the pleasantness of the texture and flavor of a high- and low-fat food with a vanilla or strawberry flavor, with neural activations measured with functional magnetic resonance imaging. Activity in the midorbitofrontal and anterior cingulate cortex was correlated with the pleasantness of oral fat texture and in nearby locations with the pleasantness of flavor. The pregenual cingulate cortex showed a supralinear response to the combination of high fat and pleasant, sweet flavor, implicating it in the convergence of fat texture and flavor to produce a representation of highly pleasant stimuli. The subjective reports of oral fattiness were correlated with activations in the midorbitofrontal cortex and ventral striatum. The lateral hypothalamus and amygdala were more strongly activated by high- versus low-fat stimuli. This discovery of which brain regions track the subjective hedonic experience of fat texture will help to unravel possible differences in the neural responses in obese versus lean people to oral fat, a driver of food intake

    Neural Basis for Economic Saving Strategies in Human Amygdala-Prefrontal Reward Circuits.

    Get PDF
    Economic saving is an elaborate behavior in which the goal of a reward in the future directs planning and decision-making in the present. Here, we measured neural activity while subjects formed simple economic saving strategies to accumulate rewards and then executed their strategies through choice sequences of self-defined lengths. Before the initiation of a choice sequence, prospective activations in the amygdala predicted subjects' internal saving plans and their value up to two minutes before a saving goal was achieved. The valuation component of this planning activity persisted during execution of the saving strategy and predicted subjects' economic behavior across different tasks and testing days. Functionally coupled amygdala and prefrontal cortex activities encoded distinct planning components that signaled the transition from saving strategy formation to execution and reflected individual differences in saving behavior. Our findings identify candidate neural mechanisms for economic saving in amygdala and prefrontal cortex and suggest a novel planning function for the human amygdala in directing strategic behavior toward self-determined future rewards

    Primate amygdala neurons evaluate the progress of self-defined economic choice sequences.

    Get PDF
    The amygdala is a prime valuation structure yet its functions in advanced behaviors are poorly understood. We tested whether individual amygdala neurons encode a critical requirement for goal-directed behavior: the evaluation of progress during sequential choices. As monkeys progressed through choice sequences toward rewards, amygdala neurons showed phasic, gradually increasing responses over successive choice steps. These responses occurred in the absence of external progress cues or motor preplanning. They were often specific to self-defined sequences, typically disappearing during instructed control sequences with similar reward expectation. Their build-up rate reflected prospectively the forthcoming choice sequence, suggesting adaptation to an internal plan. Population decoding demonstrated a high-accuracy progress code. These findings indicate that amygdala neurons evaluate the progress of planned, self-defined behavioral sequences. Such progress signals seem essential for aligning stepwise choices with internal plans. Their presence in amygdala neurons may inform understanding of human conditions with amygdala dysfunction and deregulated reward pursuit

    A dynamic code for economic object valuation in prefrontal cortex neurons.

    Get PDF
    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices.Wellcome Trust, Behavioural and Clinical Neuroscience Institute (BCNI) Cambridg

    Neural systems underlying decisions about affective odors.

    Get PDF
    Decision making about affective value may occur after the reward value of a stimulus is represented and may involve different brain areas to those involved in decision-making about the physical properties of stimuli, such as intensity. In an fMRI study, we delivered two odors separated by a delay, with instructions on different trials to decide which odor was more pleasant or more intense or to rate the pleasantness and intensity of the second odor without making a decision. The fMRI signals in the medial pFC area 10 and in regions to which it projects, including the ACC and insula, were higher when decisions were being made compared with ratings, implicating these regions in decision-making. Decision-making about affective value was related to larger signals in the dorsal part of medial area 10 and the agranular insula, whereas decisions about intensity were related to larger activations in the dorsolateral pFC, ventral premotor cortex, and anterior insula. For comparison, the mid-OFC had activations related not to decision making but to subjective pleasantness ratings, providing a continuous representation of affective value. In contrast, areas such as medial area 10 and the ACC are implicated in reaching a decision in which a binary outcome is produced

    Planning activity for internally generated reward goals in monkey amygdala neurons.

    Get PDF
    The best rewards are often distant and can only be achieved by planning and decision-making over several steps. We designed a multi-step choice task in which monkeys followed internal plans to save rewards toward self-defined goals. During this self-controlled behavior, amygdala neurons showed future-oriented activity that reflected the animal's plan to obtain specific rewards several trials ahead. This prospective activity encoded crucial components of the animal's plan, including value and length of the planned choice sequence. It began on initial trials when a plan would be formed, reappeared step by step until reward receipt, and readily updated with a new sequence. It predicted performance, including errors, and typically disappeared during instructed behavior. Such prospective activity could underlie the formation and pursuit of internal plans characteristic of goal-directed behavior. The existence of neuronal planning activity in the amygdala suggests that this structure is important in guiding behavior toward internally generated, distant goals

    Primate Amygdala Neurons Simulate Decision Processes of Social Partners.

    Get PDF
    By observing their social partners, primates learn about reward values of objects. Here, we show that monkeys' amygdala neurons derive object values from observation and use these values to simulate a partner monkey's decision process. While monkeys alternated making reward-based choices, amygdala neurons encoded object-specific values learned from observation. Dynamic activities converted these values to representations of the recorded monkey's own choices. Surprisingly, the same activity patterns unfolded spontaneously before partner's choices in separate neurons, as if these neurons simulated the partner's decision-making. These "simulation neurons" encoded signatures of mutual-inhibitory decision computation, including value comparisons and value-to-choice conversions, resulting in accurate predictions of partner's choices. Population decoding identified differential contributions of amygdala subnuclei. Biophysical modeling of amygdala circuits showed that simulation neurons emerge naturally from convergence between object-value neurons and self-other neurons. By simulating decision computations during observation, these neurons could allow primates to reconstruct their social partners' mental states

    A common neural scale for the subjective pleasantness of different primary rewards.

    Get PDF
    When an economic decision is taken, it is between goals with different values, and the values must be on the same scale. Here, we used functional MRI to search for a brain region that represents the subjective pleasantness of two different rewards on the same neural scale. We found activity in the ventral prefrontal cortex that correlated with the subjective pleasantness of two fundamentally different rewards, taste in the mouth and warmth on the hand. The evidence came from two different investigations, a between-group comparison of two independent fMRI studies, and from a within-subject study. In the latter, we showed that neural activity in the same voxels in the ventral prefrontal cortex correlated with the subjective pleasantness of the different rewards. Moreover, the slope and intercept for the regression lines describing the relationship between activations and subjective pleasantness were highly similar for the different rewards. We also provide evidence that the activations did not simply represent multisensory integration or the salience of the rewards. The findings demonstrate the existence of a specific region in the human brain where neural activity scales with the subjective pleasantness of qualitatively different primary rewards. This suggests a principle of brain processing of importance in reward valuation and decision-making
    corecore